

Plant Archives

Journal homepage: http://www.plantarchives.org DOI Url: https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.2.299

INFLUENCE OF FOLIAR MICRONUTRIENTS AND LIQUID MANURE APPLICATIONS ON YIELD ATTRIBUTES OF GARDEN PEA IN SEMI-ARID REGIONS OF RAJASTHAN INDIA

Surendra Singh Rathore¹, S.P. Singh¹, Kamlesh Kumar Yadav¹, Priyadarshani A. Khambalkar^{2*} and Komal Yadav^{3*}

¹Department of Horticulture, S.K.N. College of Agriculture, Sri Karan Narendra Agriculture University, Jobner-303329, Rajasthan, India

²Department of Soil Science, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, (MP) 474002 ³Department of Horticulture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, (MP) 474002 *Corresponding authors E-mail: kamalyadav664@gmail.com; murlipriya245@gmail.com (Date of Receiving: 05-07-2025; Date of Acceptance: 13-09-2025)

ABSTRACT

Garden pea is a very important cool season legume vegetable crop cultivated for its tender green pods rich in protein, vitamins and minerals. However, in dry and semi-arid zones of Rajasthan, pea productivity is constrained by poor soil fertility, low organic matter and inadequate nutrient presence. Therefore, this experiment was laid out to investigate the impact of foliar applied micronutrients and liquid manures on yield and related traits of garden pea during the *Rabi* seasons of 2022-23 and 2023-24 at Rajasthan Agricultural Research Institute, Durgapura, Jaipur. The experiment was laid out in factorial randomized block design with four micronutrient and three liquid manure treatments along with one untreated control. Results revealed that ZnSO₄ @ 0.5% and Jeevamrit @ 500 litre/ha significantly improved nodulation, pod characteristics like pod length, pod numbers per plant and weight of pod along with yield components like pod yield per plant, pod yield per plot and number of pickings compared to control. These findings suggest that application of micronutrients and organic liquid formulations can offer a sustainable solution to boost productivity of garden pea in nutrient poor soils of semi-arid regions.

Keywords: Garden pea, Jeevamrit, Liquid manures, Micronutrients, Yield and ZnSO₄.

Introduction

Leguminous crops are great protein source in the diet of vegetarians and help in mitigating malnutrition in the country as they contain around 20-25% protein by their weight which is around thrice the protein content of rice and twice of wheat (Singh et al., 2016; Singh et al., 2024). Garden pea (Pisum sativum L.) is a highly valued cool season legume vegetable crop cultivated extensively for its green tender pods and seeds which are consumed fresh, dried or processed (Hussain et al., 2006; Sepehya et al., 2015; Joshi et al., 2020). It holds significant nutritional and economic importance in India specially for small holder farmers. It is rich in digestible proteins, essential vitamins (A, B complex and C) and minerals like phosphorus, magnesium and iron (Bhat al.. 2013; Rungruangmaitree and Wannee, 2017; Pande and Kumar, 2024). Garden pea contributes to food and nutritional security (Duke and Edward, 1985; Dhall, 2017). Apart from their nutritional benefits, peas are a useful part of crop rotation and improves soil fertility through nitrogen fixation. It is well suited to Rabi season cultivation and thrives under cool, dry climatic conditions (Pandey et al., 2006; Tiwari et al., 2020). However, in regions like semi-arid Rajasthan where soils are often light textured with low in organic matter and deficient in key nutrients, its productivity potential is seldom realized. Despite its agronomic advantages, garden pea yields in semi-arid areas are constrained by poor soil fertility and suboptimal nutrient management, deficiencies of micronutrients such as zinc, iron and molybdenum along with limited soil biological activity, reduced plant vigour, nodulation and pod development. In this context, the foliar applied micronutrients along with organic liquid manures such as Panchagvya, Vermiwash and Jeevamrit offers a promising approach (Natarajan, 2002). These inputs might enhance nutrient availability, stimulated plant metabolism and support beneficial microbial population, making them suitable for sustainable legume production. However, systematic research evaluating their effects under semi-arid conditions in scarce. Hence, the current investigation was carried out to access the impact of foliar applied micronutrient and organic liquid manures on the nodulation, yield and its attributes in garden pea under dry and semi-arid areas of Rajasthan, India. The study aims to generate evidences for effective, economical and eco-friendly management strategies for resource constrained agro ecosystems.

Materials and Methods

The present investigation was performed during Rabi seasons of 2022-23 and 2023-24 Horticulture Farm, Department of Horticulture, Rajasthan Agriculture Research Institute, Durgapura, Jaipur, Rajasthan. The research area of the present investigation is situated at 26.5° North latitude, 75.47° East longitudes and height of 390 meters above the mean sea level. The experimental area has a typical semi-arid climatic condition with hot summers and dry cold winters and an average rainfall of around 500-700 mm per year. The soil conditions of the experimental site were sandy loam, alkaline with pH 8.1-8.3, with poor organic carbon (0.24-0.27%), low available nitrogen (134.2-138.2 kg/ha), medium available phosphorus (78.6-78.7 kg/ha) and high available potassium (174.9-218 kg/ha). The semi-arid climate was characterized by low humidity with temperatures ranging from 6-28°C during the cropping period. A factorial randomized block design was employed with four micronutrient treatments (ZnSO₄ @ 0.5%, FeSO₄ @ 0.3%, MgSO₄ @ 0.5% and ammonium molybdate @ 0.1%) and three liquid manures treatments (Panchgavya @ 4%, Vermiwash @ 10% and Jeevamrit @ 500 litre ha⁻¹) along with one untreated control. Foliar application of these micronutrients and organic liquid manures were given at 30 and 45 days after sowing the control was sprayed with distilled water alone. Before application, lime @ 2 g/lit of water was used to neutralized the solution of ZnSO₄ and FeSO₄. The variety Azad P-3 was sown at 45 x 10 cm spacing using a seed rate of 120 Kg/ha. The parameters recorded included nodules per plant (numbers), length of pods (cm), pods per plant (numbers), weight of pods (g), pod yield per plant (g), pod yield per plot (Kg) and number of pickings. The data were statistically

analysed using ANOVA at the 5% level of significance as outlined by Panse and Sukhatme (1967).

Results and Discussion

The results of the current study disclosed that the foliar application of micronutrients and liquid manures remarkably enhanced the yield attributes of garden pea across both the experimental years which is presented in the following sections along with suitable discussion and review of literature from past studies.

Number of nodules per plant

The number of nodules per plant in garden pea was significantly influenced by foliar application of both micronutrients and liquid manures (Table 1). Among the micronutrients ZnSO₄ @ 0.5%/ha (M₁) recorded the highest nodules (40.55), followed by M₂ (FeSO₄ @ 0.3%) and M₃ (MgSO₄ @ 0.5%), while the lowest (36.32) was observed in control. Pooled data revealed that ZnSO₄ @ 0.5%/ha increased nodulation by 11.65% over control. Similarly, among liquid manures Jeevamrit @ 500 litres/ha significantly outperformed others with 39.94 nodules per plant, followed by Panchgavya @ 4% and Vermiwash @ 10%, whereas the control recorded the minimum (35.82). Jeevamrit resulted in 11.50% and 2.49% higher nodulation over control and Vermiwash @ 10% respectively. The enhanced nodulation may be attributed to improved nutrient uptake and stimulation of microbial activity. These findings align with Pal et al. (2023) and Naz et al. (2022) who reported improved root nodulation with zinc application and Jain and Sharma (2019), who observed better root development with liquid organics.

Number of pods per plant

The number of pods per plant was significantly influenced by foliar application of both micronutrients and liquid manures during 2022-23, 2023-24 and pooled analysis (Table 1). Among micronutrient treatments, ZnSO₄ @ 0.5%/ha recorded the highest number of pods per plant (7.89) followed by FeSO₄ @ 0.3% and MgSO₄ @ 0.5% which were statistically at par. The lowest pods per plant (7.68) were recorded under the control. Zinc application showed an increase of 2.73% over control, which may be attributed to its role in enzyme activation, hormonal regulation and synthesis of valuable protein (Borah et al., 2021; Singh et al., 2023). Similarly, among liquid manures Jeevamrit @ 500 litres/ha produced the maximum pods (7.90),significantly plant outperforming Panchgavya @ 4% and Vermiwash @ 10%, with control recording the lowest (7.52). This enhancement of green pea pods under Jeevamrit @ 500 litres/ha might be because of the presence of growth promoting factors and microbial activities (Shiri *et al.*, 2020; Basavarajappa and Lingaraju 2024), leading to improved pod set and development.

Pod length

The pod length was remarkably enhanced by foliar application of both micronutrients and liquid manures during 2022-23, 2023-24 and pooled analysis (Table 2). Among micronutrient treatments, ZnSO₄ @ 0.5%/ha produced the longest pods (10.33 cm), significantly outperforming all other treatments. The shortest pods were observed in control with a pooled mean of 8.50 cm. The increase in pod length due to ZnSO₄ @ 0.5%/ha over control, FeSO₄ @ 0.3%, MgSO₄ @ 0.5% and ammonium molybdate @ 0.1% was 21.53%, 20.40% 19.28%, and 20.54% respectively. Among liquid manures, Jeevamrit @ 500 litres/ha significantly improved pod length (9.12 cm), followed by Panchgavya @ 4% and Vermiwash @ 10%, which were statistically at par. Control yielded the shortest pods (8.55 cm). The beneficial effects are attributed to the role of zinc in enzyme activation, protein synthesis and carbohydrate metabolism (Singh et al., 2021; Naz et al., 2022). While liquid manures enhance root growth, nutrient uptake photosynthesis due to the presence of growth promoting substances (Sutar al.. 2018; Basavarajappa and Lingaraju 2024).

Pod weight

The pod length was notably enhanced by foliar application of both micronutrients and liquid manures during 2022-23, 2023-24 and pooled analysis (Table 2). ZnSO₄ @ 0.5%/ha recorded the highest pod weight (8.77 g in 2022-23, 9.06 g in 2023-24 and 9.02 g pooled data), significantly outperforming all other treatments. FeSO₄ @ 0.3%, MgSO₄ @ 0.5% and ammonium molybdate @ 0.1% remained statistically at par, while the lowest pod weight (7.45 g) was observed in the control. The ZnSO₄ @ 0.5%/ha treatment enhanced pod weight by 21.07% over control. Foliar application of Jeevamrit @ 500 litres/ha produced the highest pod weight (7.97 g), followed by Vermiwash @ 10% and Panchgavya @ 4% which were at par. The Jeevamrit @ 500 litres/ha treatment improved pod weight by 6.41% over control and 1.40% over vermiwash. These results align with (Meitei et al., 2022; Naz et al., 2022; Sathyan, 2022), who linked zinc and liquid organics with improved enzymatic activity, nutrient assimilation and pod development. Similar findings were reported in pea and cow pea by Sutar et al. (2018) and Basavarajappa and Lingaraju (2024).

Pod yield per plant

The pod yield per plant was significantly enhanced by foliar application of both the micronutrients and liquid manures during 2022-23, 2023-24 and pooled analysis (Table 3). ZnSO₄ @ 0.5%/ha recorded the highest pod yield per plant (71.21 g/plant) which was significantly superior to all the treatments and control (57.32 g/plant). The yield increase in ZnSO₄ @ 0.5%/ha was 24.23% over control. Among liquid manures, Jeevamrit @ 500 litres/ha recorded the maximum pod yield per plant (63.03 g/plant), followed by Panchgavya @ 4% and Vermiwash @10%, which were at par. The lowest yield (56.32 g/plant) was noted in control. This enhancement in the pod yield can be attributed to zinc's role in enzyme activation, protein synthesis and hormonal regulation (Meitei et al., 2022; Naz et al., 2022) and the nutrient rich and growth promoting effects of organic manures (Dutta et al., 2018; Kadam et al., 2023; Sutar et al., 2018; Shiri et al., 2020). These treatments contributed to greater pod set, seed development and higher marketable yield in garden

Pod yield per plot

The pod yield per plot was significantly influenced by foliar application of both the micronutrients and liquid manures over the two growing seasons (2022-23 and 2023-24) as well as in pooled analysis (Table 3). Among the micronutrients ZnSO₄ @ 0.5%/ha recorded the highest pod yield per plot (5.13 Kg/plot) marking a significant increase of 24.12%, 21.56%, 22.43% and 21.85% over control, FeSO₄ @ 0.3%, MgSO₄ @ 0.5% and ammonium molybdate @ 0.1% respectively. Similarly, Jeevamrit @ 500 litres/ha outperformed other liquid manures, recording 4.54 Kg/plot which was 12.10% higher then control. This enhancement in the yield is attributed to zinc's physiological roles in enzymatic functions and the bioactive compounds in organic manures enhancing nutrient uptake and plant metabolism (Dutta et al., 2018; Kadam et al., 2023; Sutar et al., 2018; Shiri et al., 2020; Naz et al., 2022).

Number of pickings

The number of pickings in garden pea was significantly influenced by foliar application of both the micronutrients and liquid manures during the cropping season of 2022-23, 2023-24, as well as in pooled analysis (Table 3). Among micronutrient treatments, ZnSO₄ @ 0.5%/ha consistently recorded the highest number of pickings *i.e.*, 4.10, 4.21 and 4.16 respectively. This treatment was showing a significant

increase of 6.39%, 4.26%, 4.00% and 3.48% over control, ammonium molybdate @ 0.1%, MgSO₄ @ 0.5% and FeSO₄ @ 0.3% respectively. Similar trends were observed with liquid manures, where foliar application of Jeevamrit @ 500 litres/ha also recorded the highest number of pickings i.e., 4.12, 4.22 and 4.17 respectively followed by Panchgavya @ 4% and Vermiwash @10%. Jeevamrit @ 500 litres/ha significantly outperformed control, with picking of 4.12 in 2022-23, 4.22 in 2023-24 and pooled average of 4.17). The overall increase of 12.10% over control was observed with the treatment of Jeevamrit @ 500 litres/ha. The improved results under ZnSO₄ and Jeevamrit are attributed to better nutrient assimilation, hormonal stimulation and physiological enhancement, as supported by earlier findings of Borah et al. (2021), Kadam et al. 2023, Naz et al. (2022) and Sutar et al. (2018).

Conclusion

The present investigation clearly established that foliar application of micronutrients and liquid manures significantly improved nodulation, pod development and overall yield performance of garden pea under semi-arid conditions of Rajasthan. Among all the

treatments ZnSO₄ @ 0.5% and Jeevamrit @ 500 litre/ha emerged as the most effective, individually enhancing yield components such as pod length, number of pods per plant, pod weight, pod yield per plant and pod yield per plot. These treatments also contributed to higher nodulation and extended harvesting duration, thereby increasing the number of pickings and cumulative marketable yield. The improvement can be attributed to the synergistic role of micronutrients in enzyme activation and photosynthesis, along with the microbial richness and hormonal effects of jeevamrit that promote nutrient availability and plant vigour. The findings suggests that however, in the present study individual micronutrients and organic liquid manure foliar sprays significantly enhanced the yield of garden pea, the integration of these micronutrients and organic liquid manures might offer a sustainable eco-friendly and cost-effective approach to boost productivity of garden pea in nutrient deficient, water limited agro ecosystems. This nutrient strategy holds potential for wider adoption among farmers seeking to enhance legume productivity while minimizing chemical input dependency.

Table 1: Influence of micronutrients and liquid manures on nodules and pods per plant of garden pea

Treatments	No	dules per pl	ant	Number of pods per plant			
	2022-23	2022-23	2022-23	2022-23	2023-24	Pooled	
Micronutrients (% ha ⁻¹)							
M ₀ (Control)	34.85	37.79	36.32	7.64	7.73	7.68	
M ₁ (ZnSO ₄ @ 0.5%)	38.96	42.14	40.55	7.85	7.94	7.89	
M ₂ (FeSO ₄ @ 0.3%)	37.78	40.85	39.32	7.73	7.81	7.77	
M ₃ (MgSO ₄ @ 0.5%)	37.32	40.35	38.84	7.71	7.80	7.75	
M ₄ (Ammonium molybdate @ 0.1%)	36.35	39.29	37.82	7.70	7.79	7.75	
SEm±	0.29	0.38	0.24	0.04	0.02	0.02	
CD (P=0.05)	0.84	1.08	0.67	0.10	0.05	0.06	
L ₀ (Control)	34.42	37.22	35.82	7.47	7.56	7.52	
L ₁ (Panchgavya @ 4% at 30 & 45 DAS)	37.99	41.11	39.55	7.79	7.88	7.84	
L ₂ (Vermiwash @ 10% at 30 & 45 DAS)	37.43	40.50	38.97	7.78	7.87	7.83	
L ₃ (Jeevamrit @ 500 litre ha ⁻¹ at 30 & 45 DAS)	38.36	41.51	39.94	7.86	7.95	7.90	
SEm±	0.26	0.34	0.21	0.03	0.02	0.02	
CD (P=0.05)	0.75	0.96	0.60	0.09	0.04	0.05	

Table 2: Influence of micronutrients and liquid manures on pod length and pod weight of garden pea

Treatments	Po	od length (c	m)	Pod weight (g)			
	2022-23	2022-23	2022-23	2022-23	2023-24	Pooled	
Micronutrients (% ha ⁻¹)							
M ₀ (Control)	8.45	8.55	8.50	7.40	7.49	7.45	
M ₁ (ZnSO ₄ @ 0.5%)	10.28	10.38	10.33	8.97	9.06	9.02	
M ₂ (FeSO ₄ @ 0.3%)	8.53	8.78	8.66	7.47	7.57	7.52	
M ₃ (MgSO ₄ @ 0.5%)	8.51	8.64	8.58	7.46	7.55	7.50	
M ₄ (Ammonium molybdate @ 0.1%)	8.51	8.62	8.57	7.43	7.69	7.56	
SEm±	0.04	0.07	0.04	0.04	0.06	0.04	
CD (P=0.05)	0.12	0.20	0.12	0.11	0.18	0.10	

L ₀ (Control)	8.51	8.59	8.55	7.45	7.52	7.49
L ₁ (Panchgavya @ 4%	8.97	9.14	9.06	7.85	8.00	7.92
L ₂ (Vermiwash @ 10%	8.92	9.03	8.98	7.81	7.90	7.86
L ₃ (Jeevamrit @ 500 litre ha ⁻¹	9.02	9.21	9.12	7.88	8.06	7.97
SEm±	0.04	0.06	0.04	0.03	0.06	0.03
CD (P=0.05)	0.11	0.18	0.10	0.10	0.16	0.09

Table 3: Influence of micronutrients and liquid manures on pod yield and number of pickings in garden pea

Treatments	Pod yield (g/plant)			Pod yield (kg/plot)			No. of pickings			
	2022-23	2023-24	Pooled	2022-23	2023-24	Pooled	2022-23	2023-24	Pooled	
Micronutrients (% ha ⁻¹)										
M ₀ (Control)	56.67	57.97	57.32	4.08	4.17	4.13	3.86	3.96	3.91	
M ₁ (ZnSO ₄ @ 0.5%)	70.44	71.98	71.21	5.07	5.18	5.13	4.10	4.21	4.16	
M ₂ (FeSO ₄ @ 0.3%)	57.77	59.96	58.86	4.12	4.32	4.22	3.96	4.07	4.02	
M ₃ (MgSO ₄ @ 0.5%)	57.50	58.86	58.18	4.14	4.24	4.19	3.94	4.05	4.00	
M ₄ (Ammonium molybdate @ 0.1%)	57.28	59.80	58.54	4.16	4.26	4.21	3.94	4.04	3.99	
SEm±	0.45	0.53	0.35	0.03	0.04	0.03	0.04	0.02	0.02	
CD (P=0.05)	1.29	1.52	0.98	0.09	0.11	0.07	0.12	0.06	0.07	
Liquid manures										
L ₀ (Control)	55.73	56.91	56.32	4.01	4.10	4.05	3.67	3.77	3.72	
L ₁ (Panchgavya @ 4%	61.22	63.06	62.14	4.41	4.54	4.47	4.04	4.15	4.10	
L ₂ (Vermiwash @ 10%	60.83	62.24	61.54	4.38	4.48	4.43	4.03	4.14	4.09	
L ₃ (Jeevamrit @ 500 litre ha ⁻¹	61.95	64.11	63.03	4.46	4.62	4.54	4.12	4.22	4.17	
SEm±	0.40	0.47	0.31	0.03	0.03	0.02	0.04	0.02	0.02	
CD (P=0.05)	1.15	1.36	0.88	0.08	0.10	0.06	0.11	0.05	0.06	

References

- Arunasree, T., Kumar, G., & Singh, R. (2024). Exploring the Therapeutic Benefits of Honey: A Focus on Bioactive Compounds and Nutritional Composition. *Acta Pharma Reports.* 12 to, 16.
- Basavarajappa, S.H. and Lingaraju, H.G. (2024). Influence of liquid formulations jeevamrita and panchgavya on growth and yield attributes of tomato plant. *Int. J. Bio. Pharm. All. Sci.*, **13(5)**, 2448-2458.
- Bhat, T.A., Gupta, M., Ganai, M.A., Ahanger, R.A. and Bhat, H.A. (2013). Yield soil health and nutrient utilization of field pea (*Pisum sativum* L.) as affected by phosphorus and bio-fertilizers under subtropical conditions of Jammu. *Int. J. Mod. Plant Animal Sci.*, **11**, 1-8.
- Borah, L., Saikia, J. and Basumatary, A. (2021). Effect of foliar application of zinc on growth and yield of garden pea (*Pisum sativum* L.) in Assam condition. *Int. J. Chem. Stud.*, **9(2)**, 869-872.
- Chawla, R., Mondal, K., & Pankaj, M. S. (2022). Mechanisms of plant stress tolerance: Drought, salinity, and temperature extremes. *Plant Science Archives*, 4(08). DOI: https://doi.org/10.51470/PSA.2022.7.2.04
- Dhall, R.K. (2017). Pea cultivation-Punjab Agriculture University-Ludhaina. ISBN-978-938626-375.
- Duke, J.A. and Edward, S.A. (1985). Medicinal plants of China. Reference publication. Inc, 20, 4.
- Dutta, A.K., Majee, S.K. and Das, R. (2018). Effect of BD-501 and panchagavya on yield and quality of garden pea cv. Arkel. *Int. J. Lat. Eng. Man. Res.*, **3(2)**, 50-53.
- Hussain, K., Hussain, M., Majeed, A., Nawaz, K., Nisar, M.F. and Afghan, S. (2006). Morphological response of scurf pea (*Psoralea corylifolia* L.) to indole acetic acid (IAA) and nitrogen (N). *World App. Sci. J.*, **8**, 1220-1225.

- Jain, S. and Sharma, K. (2019). Effect of liquid organic manures on growth and yield of pea (*Pisum sativum*). J. Soil Sci. Plant Nutri., 19(2), 301-311.
- Joshi, H.N., Varma, L.R and More, S.G. (2020). Effects of organic nutrients in combination with biofertilizers on uptake N, P, K and yield of garden pea (*Pisum sativum* L.) CV. Bonneville. *The Pharma Inn. J.*, 9(3), 385-389.
- Kadam, K., Singh, V. and George, S.G. (2023). Effect of liquid organic manure on growth and yield of field pea (*Pisum sativum*, Fabaceae). *Int. J. Env. Climate Chan.*, 13(10), 403-410.
- Manjulatha, G. and Rajanikanth, E (2022). Emerging Strategies in Climate Change Mitigation and Adaptation. *Environmental Reports; an International Journal*. DOI: https://doi.org/10.51470/ER.2022.4.2.06
- Meitei, A.N., Bhatt, S.S., Devi, M.M., Phurailatpam, D. and Singson, L. (2022). Performance of micronutrients and npk on growth and yield of field pea (*Pisum sativum L.*) Var. Arkel. *Int. J. Novel Res. Dev.*, **7(9)**, 2456-4184.
- Natarajan, K. (2002). Panchgavya a manual. Other India Press, Mapusa, Goa. 13-27.
- Naz, S., Latif, M.U., Haider, S.T., Ali, S., Sardar, S., Ahamid, H. and Anjum, M.A. (2022). Potential of foliar application of micronutrients on growth, yield and quality and nutraceutical properties of pea (*Pisum sativum L.*). *Pakistan J. Botany.*, 54(3), 931-942.
- Pal, R.K., Pal, A.K., Chaurasiya, R., Bharadwaj, M. and Sharma, A. (2023). Effect of micronutrients on productivity and profitability of pea (*Pisum sativum* sub sp. *hortense*). *Int. J. Env. Climate Chan.*, **13(12)**, 30-24.
- Pande, K.K. and Kumar, R. (2024). Yield and marketing attributes of different pea varieties under organic conditions of mid Hills. *J. Krishi Vigyan.*, **12(4)**, 965-969.

- Pandey, A.K., Tiwari, S.K., Singh, P.M. and Rai, M. (2006). Effect of GA₃ and NAA on vegetative growth, yield and quality of garden pea (*Pisum sativum* L. ssp. hortense). *Veg. Sci.*, **311**, 63-65.
- Panse, V.G. and Sukhatme, P.V. (1967). Statistical methods for agricultural workers, ICAR Publication New Delhi. 14, 33
- Richard T. Kiptisia, Margaret Maina and Edwin K. Kirwa (2025). Determination of Essential Minerals and Toxic Elements Composition of Natural Soil Lick (Ng'engta) in Yatya Village, Baringo County, Kenya. *Agriculture* Archives: an International Journal. https://doi.org/10.51470/AGRI.2025.4.2.01
- Rungruangmaitree, R. and Wannee, J. (2017). Pea, *Pisum sativum*, and its anticancer activity. *Pharma. Rev.*, **11(21)**, 39-42.
- Saini, P. K., Sachan, K., Surekha, S., & Asif Islam, N. (2022).

 Rice Tolerance to Iron-De icient and Iron-Toxic Soil
 Conditions elucidate Mechanisms and
 Implications. *Journal of Plant Biota*.
- Sathyan, D. (2022). Effect of nano nutrients on pea growth and yield (*Pisum sativum L.*). The Pharma Inn. J., **11(9)**, 1895-1898.
- Sepehya, S., Bhardwaj, S. K. and Dhiman, S. (2015). Quality attributes of garden pea (*Pisum sativum* L.) as influenced by Integrated Nutrient Management under mid hill conditions. *J. Krishi Vigyan.*, **3(2)**, 78-83.

- Shiri, T., Kumar, A., Priyta, V., Kumar, A., Singh, G and Saifi, N. (2020). Stimulus of Panchgavya Bio-Manure (PGBM) on developmental growth as well as harvest of *Pisum sativum. J. Pharma. Phytochem.*, 3, 905-910.
- Singh, A.K., Nayak, S., Gupta, P.K., Khare, Y.R. and Sharma, D.P. (2024). Influence of technological interventions on yield attributes, yield of field pea and its diffusion in Jabalpur district of Madhya Pradesh. *J. Krishi Vigyan.*, 12(3), 569-574.
- Singh, M. and Bhatt, B.P. (2016). Effect of integrated nutrient management on soil fertility status, productivity and profitability of garden pea. *J. Krishi Vigyan.*, **5(1)**, 29-33.
- Singh, S.K., Singh, M.K., Singh, R.K., Mishra, S.K. and Singh, D. (2021). Effect of micro-nutrients on growth and yield of tomato (*Lycopersicon esculentum Mill.*). The Pharma Inn. J., 10(2), 108-111.
- Singh, V.K., Bamrara, S. and Sharma, A. (2023). Effect of organic sources of nutrients on growth, yield and quality of pea (*Pisum sativum L.*). The Pharma Inn. J., **12(3)**, 5494-5501.
- Sutar, R, Sujith, G.M. and Devakumar, N. (2018). Growth and yield of Cowpea [Vigna unguiculata (L.) Walp] as influenced by jeevamrit and panchgavya application. Legume Res., 42, 824-828.
- Tiwari, A., Joshi, U., Mewar, D. and Pant, H. (2020). Insect pest of pea, nature of the damage and their management. *Time. Agri.*, **7**, 112-116.